www.thinkSRS.com

Gated Integrators and Boxcar Averagers

SR245 — Computer interface module with GPIB and RS-232

- Eight analog I/O ports
- 8-bit digital I/O port
- Two TTL I/O ports
- RS-232 and GPIB interfaces
- 3500 point sample memory
- Simple command structure

SR245 Computer Interface

The SR245 Computer Interface module is a powerful tool for data acquisition. It provides both an analog and a digital interface between your computer and your experiment.

Analog I/O

The eight analog I/O channels can be designated through software as all inputs, all outputs, or as a combination of inputs and outputs. All channels have 13 bits of resolution over the ± 10.24 VDC full-scale range, with 0.05 % accuracy.

Digital I/O

Two front-panel digital I/O bits are provided for use as counters or triggers and can be set or read by the computer. Additionally, an 8-bit input and an 8-bit output port are available (on an internal connector) for your own custom digital interfaces.

RS-232 and GPIB interfaces

Both RS-232 and GPIB interfaces are standard features of the SR245. Simple commands make programming easy from a variety of high-level languages—all that's necessary is the ability to send and receive ASCII strings. For example, sending "?5" instructs the module to measure the voltage on the 5th analog input BNC. Other commands allow you to record in the module's 3500 point buffer memory, ramp an analog output at a specified rate (for gate scanning), or read the contents of a digital counter.

Ordering Information SR245 Computer interface module

phone: (408)744-9040 www.thinkSRS.com

SR245 Specifications

Analog Ports

Configuration	Any number of the eight ports may be designated under program control as input ports, the rest default to output ports.
Inputs	1 M Ω impedance, ±10.24 VDC range
	Protected to 40 VDC
	13-bit resolution (2.5 mV)
	0.5 % accuracy
	Input offset <2.5 mV
	Maximum A/D rate is 2 kHz
Outputs	$<1 \Omega$ impedance
1	Short circuit current limit is 20 mA
	13-bit resolution (2.5 mV)
	0.5 % accuracy
	Output offset <2.5 mV

Digital Ports

Туре	Two front-panel I/O TTL bits, one
	8-bit digital input port, one 8-bit
	latched digital output port
Front-panel inputs	Input impedances >100 k Ω
	Minimum pulse width is 200 ns
	Maximum count rate is 4 MHz
	Logic one >3 VDC, logic zero <0.7 VDC
	Inputs protected to ± 10 VDC
Front-panel outputs	Can drive 50 Ω loads to TTL levels
General	
Interfaces	IEEE-488 (GPIB) and RS-232

Interfaces	IEEE-488 (GPIB) and KS-252
	(110 baud to 19.2 kbaud)
Power	+24 V/60 mA, 24 V/60 mA,
	+12 V/20 mA, approx. 8 watts
Mechanical	Single-width standard NIM module
Warranty	One year parts and labor on defects
	in materials and workmanship

Command List

Input/Output Commands

$I \le n \ge n = 0$ to 8	Designates the first <i>n</i> analog ports as inputs, the remainder become outputs
?< <i>n</i> > <i>n</i> =1 to 8	Returns the value of the designated analog port
?B< <i>n</i> > <i>n</i> =1,2	Returns the value (0 or 1) of the designated digital port
?D	Returns the value of the 8-bit digital input port
?S	Returns the value of the status byte, and clears the status byte
С	Configures B2 as an input and resets the B2 counter
?C	Returns number of pulses occurring at B2 since the previous ?C
S <n>=<x></x></n>	Sets the analog port n (which must

	be designated as an output) to the value x ($x = -10.237$ to $+10.237$ V)	
SB< <i>n>=</i> < <i>m></i>	n = 1 to 8 Designates digital bit <i>n</i> as output and sets its value to <i>m</i> ($n = 1, 2$ and	
SB <n>=I</n>	m = 0, 1) Designates the selected bit as an input $(n = 1, 2)$	
SD=< <i>n</i> >	Sets the 8-bit digital output port to the value $n (n = 0 \text{ to } 255)$	
SM=< <i>n</i> >	Sets the GPIB SRQ mask to the value $n (n = 0 \text{ to } 255)$	
Trigger Commands		
MS	Sets the synchronous mode. Responses to ? commands are returned after next trigger.	
MA	Sets the asynchronous mode (default). Responses to ? commands are returned after command	
T< <i>n</i> >	is received. Designates every n^{th} pulse at B1 as	
DT	a trigger ($n = 1$ to 32,767) Masks the trigger input so that no triggers are recognized	
ET	Unmasks the trigger input	
PB< <i>n</i> >	Outputs a 10 μ s TTL pulse at digital port <i>n</i> (<i>n</i> = 1, 2)	
P/< <i>n</i> >	Outputs a 10 μ s TTL pulse at B2 each <i>n</i> th trigger (<i>n</i> = 1 to 255)	
Scan Commands		
SC <i>,<k>:<n></n></k></i>	Scans the list <i>ik</i> of analog ports or digital port for <i>n</i> triggers. Total # of samples may not exceed 3711. (<i>ik</i> =1 to 8, D)	
ES	Ends the current scan immediately and resets the point sending counter	
N	Sends the next point of stored scan	
?N A< <i>n</i> >,< <i>i</i> >	Returns # of points scanned Adds $n \times 2.5$ mV to the value of	
A~11/,~1/	analog port 8 (must be positive) on every i^{th} trigger ($n, i = 1$ to 255)	
SS <i>,<k>:<n></n></k></i>	Scans the list ik of analog ports or digital port for <i>n</i> triggers. Data is sent in a 2 byte binary format while	
Х	scan is in progress. $(ik = 1 \text{ to } 8, D)$ Sends the data of a stored scan in 2 byte binary format	
Miscellaneous Commands		
MR	Master reset returns the SR245 to its	

MR	Master reset returns the SR245 to its
	default values.
W < n >	Introduces a delay of $(n \times 400 \ \mu s)$
	before sending each character over
	the RS-232 interface ($n = 0$ to 255)
Z <i>,<k></k></i>	Changes the end-of-record
	characters sent by SR245 to those
	specified by the ASCII codes, <i>ik</i>

